Abstract
Droplet manipulation is playing an important role in various fields, including scientific research, industrial production, and daily life. Here, inspired by the microstructures and functions of Namib desert beetles, Nepenthes pitcher plants, and emergent aquatic plants, we present a multibioinspired slippery surface for droplet manipulation by employing combined strategies of bottom-up colloidal self-assembly, top-down photolithography, and microstructured mold replication. The resultant multilayered hierarchical wettability surface consists of hollow hydrogel bump arrays and a lubricant-infused inverse opal film as the substrate. Based on capillary force, together with slippery properties of the substrate and wettability of the bump arrays, water droplets from all directions can be attracted to the bumps and be collected through hollow channels to a reservoir. Independent of extra energy input, droplet condensation, or coalescence, these surfaces have shown ideal droplet pumping and water collection efficiency. In particular, these slippery surfaces also exhibit remarkable features including versatility, generalization, and recyclability in practical use such as small droplet collection, which make them promising candidates for a wide range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.