Abstract

For pt.I see ibid., vol.44, no.7, p.2796-815 (1998). In multiaccess wireless systems, dynamic allocation of resources such as transmit power, bandwidths, and rates is an important means to deal with the time-varying nature of the environment. We consider the problem of optimal resource allocation from an information-theoretic point of view. We focus on the multiaccess fading channel with Gaussian noise, and define two notions of capacity depending on whether the traffic is delay-sensitive or not. In the present paper, we introduce a notion of delay-limited capacity which is the maximum rate achievable with delay independent of how slow the fading is. We characterize the delay-limited capacity region of the multiaccess fading channel and the associated optimal resource allocation schemes. We show that successive decoding is optimal, and the optimal decoding order and power allocation can be found explicitly as a function of the fading states; this is a consequence of an underlying polymatroid structure that we exploit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.