Abstract

ABSTRACTA novel adsorbent of multi-wall carbon nanotubes (MWCNTs) chemically modified silica (MWCNTs-silica) was synthesised and employed as the adsorbent material for solid-phase extraction (SPE) of trace Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) in environmental water samples followed by inductively coupled plasma optical emission spectrometry detection. This material inherits the advantages of nanomaterial MWCNTs and conventional silica with dual functional groups (–NH2 and –COOH), and avoid the problem of nanomaterial in SPE, such as high pressure. The factors affecting the separation and preconcentration of target elements such as pH, sample flow rate and volume, eluent concentration and volume were investigated. Under the optimised conditions, the detection limits for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) were 0.27, 0.11, 0.45, 0.91, 0.55 and 0.67 μg L−1 with the relative standard deviations of 3.1, 5.9, 4.1, 4.0, 7.3 and 8.6% (c = 10 μg L−1, n = 7), respectively. The adsorption capacity of MWCNTs-silica was 26.6, 70.0, 13.8, 58.0, 20.0 and 20.0 mg g−1 for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V), respectively, and the prepared adsorbent could be reused more than 100 times. In order to validate the developed method, two certified reference materials of GSBZ50009-88 and GSBZ 50029-94 environmental waters were analysed and the determined values were in good agreement with the certified values. The developed method has been applied to the determination of trace elements in environmental water samples with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.