Abstract

We introduce the genetic algorithm for the optimization of an Yb 3+ -doped double-clad fiber laser based on a multi-variable scheme. The output characteristic of the laser is numerically simulated using real practical values. This is performed through solving the associated steady-state rate equation and investigating the effects of input variables such as pump and signal wavelengths and length of the fiber on the laser output. It is found that pumping of the medium around 975 nm is conducted to attain the maximum output power of ~34.8 W, while the stability of the outcoupled power is significantly improved when pumping at 920 nm, confirming good agreement with the reported experimental results. We have also found that by using genetic algorithm base multi -variable optimization, the output power can be significantly increased by about three orders of magnitude and reaches to ~28.5 W with optimum and shorter fiber length of ~57.5 m. Obtained results show that based on the genetic algorithm multi-variable discipline, fiber characteristics can be optimized according to the gaining of maximum output power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.