Abstract

With the reversible two-electron redox reaction, dicarboxylates have been widely employed as advanced anodes for lithium-ion batteries. However, dicarboxylate-based anodes always displayed limited capacities, low rate performances, and poor long-cycle abilities due to their inevitable dissolution in the electrolyte. Here, to address the above-motioned issues, a functional multi-thiol-supported dicarboxylate-based metal–organic framework, namely Fe-TTTP, is synthesized and employed as a promising anode for lithium-ion batteries based on the redox-active Iron (III) ions and organic dicarboxylate ligands. Benefiting from its chemical structure with multiple redox metal-centers, high theoretical specific capacity, and insolubility, Fe-TTTP gains superior electrochemical performances, including a high reversible (charge) capacity of 950 mAh g−1 at 50 mA g−1, excellent rate performance (95 mAh g−1 up to 10000 mA g−1, 1.1 min for each cycle), and extraordinary cycling stability (310 ± 20 mAh g−1 for 5000 cycles at 2000 mA g−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.