Abstract

Early postnatal brain undergoes a stunning period of development. Over the past few years, research on dynamic infant brain development has received increased attention, exhibiting how important the early stages of a child's life are in terms of brain development. To precisely chart the early brain developmental trajectories, longitudinal studies with data acquired over a long-enough period of infants' early life is essential. However, in practice, missing data from different time point(s) during the data gathering procedure is often inevitable. This leads to incomplete set of longitudinal data, which poses a major challenge for such studies. In this paper, prediction of multiple future cognitive scores with incomplete longitudinal imaging data is modeled into a multi-task machine learning framework. To efficiently learn this model, we account for selection of informative features (i.e., neuroimaging morphometric measurements for different time points), while preserving the structural information and the interrelation between these multiple cognitive scores. Several experiments are conducted on a carefully acquired in-house dataset, and the results affirm that we can predict the cognitive scores measured at the age of four years old, using the imaging data of earlier time points, as early as 24 months of age, with a reasonable performance (i.e., root mean square error of 0.18).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.