Abstract

Although deep learning for Diabetic Retinopathy (DR) screening has shown great success in achieving clinically acceptable accuracy for referable versus non-referable DR, there remains a need to provide more fine-grained grading of the DR severity level as well as automated segmentation of lesions (if any) in the retina images. We observe that the DR severity level of an image is dependent on the presence of different types of lesions and their prevalence. In this work, we adopt a multi-task learning approach to perform the DR grading and lesion segmentation tasks. In light of the lack of lesion segmentation mask ground-truths, we further propose a semi-supervised learning process to obtain the segmentation masks for the various datasets. Experiments results on publicly available datasets and a real world dataset obtained from population screening demonstrate the effectiveness of the multi-task solution over state-of-the-art networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.