Abstract

Two-dimensional ultrasonic-assisted grinding (2D-UAG) has exhibited advantages in improving the machining quality of hard and brittle materials. However, the grinding mechanism in this process has not been thoroughly revealed due to the complicated material removal behaviors. In this study, multi-step 2D-UAG experiments of silicon carbide are conducted to investigate the effects of machining parameters on surface quality. The experimental results demonstrate that the tool amplitude and the workpiece amplitude have similar effects on surface roughness. In the rough grinding stage, the surface roughness decreases continuously with increasing ultrasonic amplitudes and the material is mainly removed by brittle fracture with different surface defects. Under semi-finishing and finishing grinding steps, the surface roughness first declines and then increases as the tool amplitude or workpiece amplitude grows from 0 μm to 8 μm and the inflection point appears around 4 μm. The surface damage contains small-sized pits with band-like distribution and localized grooves. Furthermore, the influences of cutting parameters on surface quality are similar to those in conventional grinding. Discussions of the underlying mechanisms for the experimental phenomena are also provided based on kinematic analysis. The conclusions gained in this study can provide references for the optimization of machining parameters in 2D-UAG of hard and brittle materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.