Abstract

Electricity demand forecasting plays a crucial role in the operation of electrical power systems because it can provide management decisions related to load switching and power grid. Thus, there have been models developed to estimate the electricity demand. However, inaccurate demand forecasting may raise the operating cost of electric power sector, which means that it would waste considerable money. In this paper, a novel modeling framework was proposed for forecasting electricity demand. Sample entropy was developed to identify the nonlinearity and uncertainty in the original time series, after that redundant noise was removed through a decomposition technique. Besides, the most optimal modes of original series and the optimal input form of the model were determined by the feature selection method. Finally, electricity demand series can be conducted forecasting through least squares support vector machine tuned by multi-objective sine cosine optimization algorithm. The case studies of Australia demonstrated that the proposed framework can ensure high accuracy and strong stability. Thus, it can be considered as a useful tool for electricity demand forecasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.