Abstract

The generation and control of multiple phases via hydrogen insertion open up avenues for tuning the properties of transition metal oxides. Here, by employing both in situ x-ray diffractions and in situ electrical measurements, we accurately probed the full structural phase transitions during the reversible process of hydrogen insertion into and extraction from the vanadium dioxide lattice. Repeatable switches between the hydrogenated VO2 phases and the pristine VO2 phase were demonstrated, implying potential applications for hydrogen detection/storage and multi-state information memorizers. Moreover, different phases were further discussed by synchrotron x-ray absorption spectroscopy and theoretical first-principles calculations, which reveal that hydrogen insertion greatly affects the filling of the d-band as well as the electrical properties. This work will provide fundamental insight into the comprehensive understanding of hydrogen-induced phase transition in metal oxides and may guide the development of proton-based sensors and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.