Abstract

ABSTRACT The firehose and mirror instabilities are thought to arise in a variety of space and astrophysical plasmas, constraining the pressure anisotropies and drifts between particle species. The plasma stability depends on all species simultaneously, meaning that a combined analysis is required. Here, we present the first such analysis in the solar wind, using the long-wavelength stability parameters to combine the anisotropies and drifts of all major species (core and beam protons, alphas, and electrons). At the threshold, the firehose parameter was found to be dominated by protons (67%), but also to have significant contributions from electrons (18%) and alphas (15%). Drifts were also found to be important, contributing 57% in the presence of a proton beam. A similar situation was found for the mirror, with contributions of 61%, 28%, and 11% for protons, electrons, and alphas, respectively. The parallel electric field contribution, however, was found to be small at 9%. Overall, the long-wavelength thresholds constrain the data well ( < 1 % unstable), and the implications of this are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.