Abstract
Tunable diode laser absorption spectroscopy (TDLAS) is a widely used diagnostic technique due to its high sensitivity, fast response, low cost, and other merits. Hydrocarbon detection is a field of great interest in the application of tunable diode lasers as hydrocarbons are fundamental molecules in many industrial processes. Many tunable diode lasers are only suitable for single species detection due to the short scanning range and in real situations. However, different hydrocarbon species tend to exist simultaneously. Here we present a laser system based on the difference-frequency generation (DFG) method for simultaneous hydrocarbon mixtures detection. The direct absorption spectra of different hydrocarbons covering various groups (e.g., alkane, olefin, and aromatic) were measured. The measurements of the concentration dependence of absorbance for each molecule were carried out. The R2 values were larger than 0.997, which demonstrated the system can measure hydrocarbons covering different molecular classes accurately. The mixture components were identified using the independent component analysis and quantitative analysis was performed using the classical least-squares method. Future studies will focus on the validation of the system in actual processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.