Abstract

In this paper, the (2+1)-dimensional Sawada-Kotera equation is studied by the truncated Painlevé expansion and Hirota bilinear method. Firstly, based on the truncation of the Painlevé series we obtain two distinct transformations which can transform the (2+1)-dimensional Sawada-Kotera equation into two bilinear equations of different forms (which are shown to be equivalent). Then employing Hirota bilinear method, we derive the analytic one-, two- and three-soliton solutions for the bilinear equations via symbolic computation. A formula which denotes the N-soliton solution is given simultaneously. At last, the evolutions and interactions of the multi-soliton solutions are graphically discussed as well. It is worthy to be noted that the truncated Painlevé expansion provides a useful dependent variable transformation which transforms a partial differential equation into its bilinear form and by means of the bilinear form, further study of the original partial differential equation can be conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.