Abstract
Target detection and segmentation in synthetic aperture radar (SAR) images are vital steps for many remote sensing applications. In the era of data-driven deep learning, this task is extremely challenging due to the limited labeled data. Few-shot learning has the ability to learn quickly from a few samples with supervised information. Inspired by this, a few-shot learning framework named MSG-FN is proposed to solve the segmentation of ship targets in heterologous SAR images with few annotated samples. The proposed MSG-FN adopts a dual-branch network consisting of a support branch and a query branch. The support branch is used to extract features with an encoder, and the query branch uses a U-shaped encoder–decoder structure to segment the target in the query image. The encoder of each branch is composed of well-designed residual blocks combined with filter response normalization to capture robust and domain-independent features. A multi-scale similarity guidance module is proposed to improve the scale adaptability of detection by applying hand-on-hand guidance of support features to query features of various scales. In addition, a SAR dataset named SARShip-4i is built to evaluate the proposed MSG-FN, and the experimental results show that the proposed method achieves superior segmentation results compared with the state-of-the-art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.