Abstract
Ash content is a key indicator to evaluate coal flotation concentrate quality and adjust flotation process parameters, which could be determined by analyzing froth images. In this research, a multi-scale multi-task neural network (MSTNet) was developed to realize accurate determination of the ash content of industrial coal flotation concentrate by analyzing froth images. Furthermore, transfer learning is used to further improve model accuracy for low-resolution images. Results obtained using industrial data show that MSTNet achieves a higher prediction accuracy while requiring less computations than previous models. It reaches the maximum R2 of 0.9063 with a processing time of 0.0035 s per image, while its competitors only reach the maximum R2 of 0.7231 with a processing time of 0.0038 s per image. This suggests that MSTNet surpassing its competitors in both accuracy and speed. Furthermore, MSTNet achieves the minimum MAPE of 0.0300, indicating that MSTNet has a mean relative prediction error of ± 3 %. This proves the high prediction accuracy of MSTNet. These results indicate that the proposed MSTNet holds great promise for practical applications. Its practical application will lead to more efficient and intelligent coal production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.