Abstract

Long-distance migrants are constrained by widely separated hospitable habitats in geographically isolated locations, making them vulnerable to environmental change, both through natural and anthropogenic causes. Knowledge about their resource selection decisions is imperative to understand the drivers of their declines. The distinct periods within an annual cycle, when individuals experience different environmental circumstances, are inextricably linked through carry-over effects which can have important consequences for the individual, and consequently the population. In this study, we employ precise archival GPS-tracking data of European Nightjars (Caprimulgus europaeus) and high-resolution global land cover data to examine habitat selection during the sedentary wintering and breeding periods, as well as during autumn and spring migration, using a correlational approach. We demonstrate how nightjars use general habitat characteristics, such as landscape diversity, for high-order habitat selection, while resource selection at a finer spatial scale is reliant on fine-scale variables related to a habitat’s suitability, such as surface area of grassland and shrubland. We show that nightjars favour spatially diverse landscapes, which allows them to minimize time spent searching for optimal habitats. The considerable variation in the drivers of habitat selection between and within seasons shows how anthropogenic land-use change can have an array of different impacts on migrants by influencing large- and fine-scale habitat selection. This study shows the advantages of an individual based GPS-tracking approach, combined with high spatial resolution remote sensing data, and highlights the need for full annual-cycle research on scale dependent habitat selection of long-distance avian migrants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.