Abstract

Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical. To reduce intra- and inter-observer variability, during the radiological assessment, computer-aided diagnostic tools have been utilized to supplement medical decision-making and subsequent disease management. Computational methods with high accuracy and robustness are required for rapid triaging of patients and aiding radiologists in the interpretation of the collected data. In this study, we propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales. We examine our model on various COVID-19 datasets acquired from different organizations to assess the generalization ability. Our experiments demonstrate that our method achieves state-of-art performance and has improved generalization capability, which is crucial for widespread deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.