Abstract
Aiming at the problems of traditional image manipulation detection methods, such as fuzzy boundaries, single scale of extracted features, and ignoring background information, this paper proposes an image manipulation detection method based on multi-scale context-aware and boundary-guided. First, spatial details and base features of manipulated images are extracted using an improved pyramid vision transformer. Second, information related to the edge of the falsified region is explored by an edge contextaware module to generate an edge prediction map. Again, the edge guidance module is utilized to highlight the key channels in the extracted features and reduce the interference of redundant channels. Then, the rich contextual information of the manipulated region is learned from multiple sensory fields through the multi-scale context-aware module. Finally, the feature fusion module is utilized to accurately segment the manipulated region by focusing alternately on the foreground and background of the manipulated images. Comparing this paper's method quantitatively and qualitatively on five commonly used public image manipulation detection datasets, the experimental results show that this paper's method can effectively detect manipulated regions and outperforms other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.