Abstract

Combinatorial optimization problems on graphs have broad applications in science and engineering. The quantum approximate optimization algorithm (QAOA) is a method to solve these problems on a quantum computer by applying multiple rounds of variational circuits. However, there exist several challenges limiting the application of QAOA to real-world problems. In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve with the number of rounds for multiple problems on several arbitrary graphs. We also demonstrate an advanced mixing Hamiltonian that allows sampling of all optimal solutions with predetermined weights. Our results are a step toward applying quantum algorithms to real-world problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.