Abstract

Multi-resolution image clustering and segmentation interactive system has been developed to analyze the interaction between clusters of heterogeneous microbial populations residing in biofilms. Biofilms are biological microorganisms attached to surfaces, which develop a complex heterogeneous three-dimensional structure. The hierarchical structural analysis concept underlying multi-resolution image segmentation is that the clusters will be more complex and noisy for higher-resolution while less complex and smoother for lower-resolution image. This hierarchical structure analysis can be used to simplify the image storage and retrieval in well-mixed populations. We are proposing an algorithm that combines Fuzzy C-Means, SOM and LVQ neural networks to segment and identify clusters. The outcome of the image segmentation is quantified by the number of cluster objects of each kind of microorganism within sections of the biofilm, and the centroid distances between the identified cluster objects. Experimental evaluations of the algorithm showed its effectiveness in enumerating cluster objects of bacteria in dual-species biofilms at the substratum and measuring the associated intercellular distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.