Abstract

To decipher the underlying mechanisms of nitroglycerin (NTG)-induced migraine electrophysiologically. Migraine is a recurrent primary headache disorder with moderate to severe disability; however, the pathophysiology is not fully understood. Consequently, safe and effective therapies to alleviate migraine headaches are limited. Local field potential (LFP) recording, as a neurophysiological tool, has been widely utilized to investigate combined neuronal activity. We recorded LFP changes simultaneously from the anterior cingulate cortex, posterior nucleus of the thalamus, trigeminal ganglion, and primary visual cortex after NTG injection in both anesthetized and freely moving rats. Additionally, brain coherence was processed, and light-aversive behavior measurements were implemented. Significant elevations of LFP powers with various response patterns for the delta, theta, alpha, beta, and gamma bands following NTG injection were detected in both anesthetized and freely moving rats; however, a surge of coherence alternations was exclusively observed in freely moving rats after NTG injection. The multi-region LFP signatures and brain coherence alternations in response to NTG-induced migraine attacks were determined. Furthermore, the results of behavior measurements in the freely moving group indicated that NTG induced the phenomenon of photophobia in our study. All these findings offer novel insights into the interpretation of migraine mechanisms and related treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.