Abstract
This study proposes a measurement property of graph states and applies it to design a mediated multiparty quantum key distribution (M-MQKD) protocol for a repeater-based quantum network in a restricted quantum environment. The protocol enables remote classical users, who cannot directly transmit qubits, to securely distribute a secret key with the assistance of potentially dishonest quantum repeaters. Classical users only require two quantum capabilities, while quantum repeaters handle entanglement transmission through single-photon measurements. The one-way transmission approach eliminates the need for additional defenses against quantum Trojan horse attacks, reducing maintenance costs compared to round-trip or circular transmission methods. As a result, the M-MQKD protocol is lightweight and easy to implement. The study also evaluates the security of the protocol and demonstrates its practicality through quantum network simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.