Abstract

We perform in this paper a multi-objective design optimization concerning the blade shape of a heat exchanger, considering the coupled solution of the flow/heat transfer processes. For this, a genetic algorithm is used. The aim of the procedure is to find the geometry most favorable to simultaneously maximize heat exchange while obtaining a minimum pressure loss. An in-house computer package, called OPAL, performs the optimization process in a fully automatic manner. It calls the pre-processor to generate the computational geometry as well as the mesh, it then performs the numerical simulation of the coupled fluid flow/heat transfer problem using Fluent, calculates the output parameters, and iterates the procedure. The genetic algorithm relies on a relatively large number of simulations, which may result in a considerable computational effort, depending on the configuration. The procedure can thus be performed in parallel on a Linux PC cluster to reduce user waiting time. A nearly optimal speed-up is obtained for the present configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.