Abstract

In this study, the process optimization of a tri-reformer reactor is conducted for the synthesis of hydrogen gas from natural gas using multi-objective optimization (MOO) approach. Specifically, four MOO problems are solved using three objective functions, namely maximization of H2, minimization of CO2, and minimization of power loss. It should be noticed that the power loss is an important economic factor due the large pressure drop and flowrates in packed bed reactors. However, it has not been used as an objective function for the optimization based design and/or operation of fixed bed reactor for reforming process to the best of authors’ knowledge. Three of the four MOO problems are 2-objective in nature with all the permutation and combination of the three objectives. The fourth MOO problem is solved considering all the three objectives, simultaneously. For all the MOO problems, feed conditions of O2, H2O, and Temperature are considered as the optimization variables. The results obtained with 3 objective functions are observed to be superior to the ones obtained from 2 objective problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.