Abstract

The aim of the present paper was to move water through a reservoir network in such a way as to meet consumer demands and level constraints, minimise the cost of electricity, and minimise the loss of chlorine. This was to be achieved by choosing the switching intervals of reservoir inlet pumps and valves, at the same time complying with the allowed minimum interval size of each device. Switching combinations that threatened to exceed constraints were rejected heuristically. Flows were balanced by linear programming (LP). The genetic algorithm gave confidence in the near-optimality of its solutions, through the well-defined Pareto fronts between the competing objectives. The method was applied to a 16-reservoir water distribution system in Durban, South Africa. Comparison with an equivalent ‘dead-band’ control showed a 30% improvement in a weighted objective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.