Abstract

Integration of microgrids may introduce significant power quality challenges to the power distribution networks that may necessitate additional enforcement such as installing new Power Quality Improvement Devices (PQID), which is costly and not always possible option. This paper proposes a control approach that enables the existing power electronics devices within the microgrid to perform multiple functions to address the resultant power quality problems. The proposed method introduces flexibility in harmonic and fundamental power sharing and controlling switching frequency through an improved cost function. Grid connected operation-mode, harmonic compensation capabilities as well as improved dynamic response of controller to fast reference changes have been studied and experimentally verified on a microgrid prototype. Finally, the experimental results of the proposed control method are compared with the results from most recent relevant research activities in the field, evidencing its superiority as compared to the existing control methods presented in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.