Abstract

In this work, two methodologies to reduce the computation time of expensive multi-objective optimization problems are compared. These methodologies consist of the hybridization of a multi-objective evolutionary algorithm (MOEA) with local search procedures. First, an inverse artificial neural network proposed previously, consisting of mapping the decision variables into the multiple objectives to be optimized in order to generate improved solutions on certain generations of the MOEA, is presented. Second, a new approach based on a pattern search filter method is proposed in order to perform a local search around certain solutions selected previously from the Pareto frontier. The results obtained, by the application of both methodologies to difficult test problems, indicate a good performance of the approaches proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.