Abstract

A coloring traveling salesman problem (CTSP) generalizes the well-known multiple traveling salesman problem, where colors are used to differentiate salesmen’s the accessibility to individual cities to be visited. As a useful model for a variety of complex scheduling problems, CTSP is computationally challenging. In this paper, we propose a Multi-neighborhood Simulated Annealing-based Iterated Local Search (MSAILS) to solve it. Starting from an initial solution, it iterates through three sequential search procedures: a multi-neighborhood simulated annealing search to find a local optimum, a local search-enhanced edge assembly crossover to find nearby high-quality solutions around a local optimum, and a solution reconstruction procedure to move away from the current search region. Experimental results on two groups of 45 medium and large benchmark instances show that it significantly outperforms state-of-the-art algorithms. In particular, it is able to discover new upper bounds for 29 instances while matching 8 previous best-known upper bounds. Hence, this work greatly advances the field of CTSP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.