Abstract

In the context of autonomous driving in urban environments accurate and reliable information about the vehicle motion is crucial. This article presents a multi-modal sensor fusion scheme that, based on standard production car sensors and an inertial measurement unit, estimates the three-dimensional vehicle velocity and attitude angles (pitch and roll). Moreover, in order to enhance the estimation accuracy, the scheme simultaneously estimates the gyroscope and accelerometer biases. The approach relies on a state-affine representation of a kinematic model with an additional measurement equation based on a single-track model. The sensor fusion scheme is built upon a recently proposed adaptive estimator, which allows a direct consideration of model uncertainties and sensor noise. In order to provide accurate estimates during collision avoidance manoeuvres, a measurement covariance adaptation is introduced, which reduces the influence of the single-track model when its information is superfluous. A validation using experimental data demonstrates the effectiveness of the method during both regular urban drives and collision avoidance manoeuvres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.