Abstract
Due to complicated excitations, engineering structures are often subjected to multi-modal responses. Considering the feasibility in practical installation on slender structures, multiple Suspension-type Tuned Vibration Absorbers (S-TVAs) are investigated for multi-modal response control. Firstly, parametric optimization of a single S-TVA for single-modal response control is investigated analytically. The issues regarding to the optimal tuning, static and dynamic performances, and installation location are addressed. Subsequently, an optimal design method for multi-modal response control with multiple S-TVAs is presented. Two aspects on the optimization strategy are discussed. Consequently, the optimization should be performed with an inverse modal order sequence. And, the modal information should be updated considering the S-TVA optimized in the previous step. Finally, the effectiveness of the presented optimal design method is validated through practical wind-induced response control on a slender chimney. The most unfavorable response can be suppressed up to 59.7 %, which is 47.8 % better than traditional single-modal control approach. Moreover, it is interesting to find that the practical overall control performance may not be achieved with more controlled modes intuitively. It is recommended to select from several practical cases determined by the presented optimal design method. Practical installation and feasibility are highly required to be considered in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.