Abstract

As an important research issue in affective computing community, multi-modal emotion recognition has become a hot topic in the last few years. However, almost all existing studies perform multiple binary classification for each emotion with focus on complete time series data. In this paper, we focus on multi-modal emotion recognition in a multi-label scenario. In this scenario, we consider not only the label-to-label dependency, but also the feature-to-label and modality-to-label dependencies. Particularly, we propose a heterogeneous hierarchical message passing network to effectively model above dependencies. Furthermore, we propose a new multi-modal multi-label emotion dataset based on partial time-series content to show predominant generalization of our model. Detailed evaluation demonstrates the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.