Abstract

We study a multi-leader single-follower congestion game where multiple users (leaders) choose one resource out of a set of resources and, after observing the realized loads, an adversary (single-follower) attacks the resources with maximum loads causing additional costs for the leaders. For the resulting strategic game among the leaders, we show that pure Nash equilibria fail to exist and therefore, we consider approximate equilibria instead. As our first main result, we show that the existence of a K-approximate equilibrium can always be guaranteed, where K (approximately equal to 1.1974) is the unique solution of a cubic polynomial equation. To this end, we give a polynomial time combinatorial algorithm which computes a K-approximate equilibrium. The factor K is tight, meaning that there is an instance that does not admit an A-approximate equilibrium for any A < K. Thus A = K is the smallest possible value of A such that the existence of an A-approximate equilibrium can be guaranteed for any instance of the considered game. Secondly, we focus on approximate equilibria of a given fixed instance. We show how to compute efficiently a best approximate equilibrium, that is, with smallest possible A among all A-approximate equilibria of the given instance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.