Abstract

Freeze-dried multi-layer graphene oxide (MLGO), produced from natural flake graphite using ionic hydration method, demonstrates strong interactions of functionalized carbon sheets with polar or nonpolar adsorbates or co-adsorbates depending on the characteristics of dispersion media. Interactions of MLGO with a mixture of water and n-decane in chloroform media provide specific surface area (Su) in contact with unfrozen liquids greater than 1000m2/g corresponding to stacks with 3–5 carbon layers. Electrostatic interactions between functionalized carbon sheets in dried MLGO are very strong. Therefore, nonpolar molecules (benzene, decane, nitrogen) cannot penetrate between the sheets. Water molecules can effectively penetrate between the sheets, especially if MLGO is located in weakly polar CDCl3 medium. In this case, n-decane molecules (co-adsorbate) can also penetrate into the sheet stacks and locate around nonpolar fragments of the sheets. The Su value of MLGO being in contact with unfrozen water can reach 360m2/g, but upon co-adsorption of water with decane Su=930m2/g, i.e., hydrophobic interactions of the mentioned fragments with decane are stronger that with co-adsorbed water. Water alone (0.25 or 0.5g/g) bound to MLGO in a mixture with fumed silica A-300 in air or CDCl3 media can provide Su=30–50m2/g. Pores in wetted MLGO or MLGO/A-300 mainly correspond to mesopores. Nanosilica does not provide significant opening of the MLGO sheet stacks during their mechanical mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.