Abstract

Older individuals infected by Human Immunodeficiency Virus (HIV) are at risk for developing HIV-Associated Neurocognitive Disorder (HAND), i.e., from reduced cognitive functioning similar to HIV-negative individuals with Mild Cognitive Impairment (MCI) or to Alzheimer's Disease (AD) if more severely affected. Incompletely understood is how brain structure can serve to differentiate cognitive impairment (CI) in the HIV-positive (i.e., HAND) from the HIV-negative cohort (i.e., MCI and AD). To that end, we designed a multi-label classifier that labels the structural magnetic resonance images (MRI) of individuals by their HIV and CI status via two binary variables. Proper training of such an approach traditionally requires well-curated datasets containing large number of samples for each of the corresponding four cohorts (healthy controls, CI HIV-negative adults a.k.a. CI-only, HIV-positive patients without CI a.k.a. HIV-only, and HAND). Because of the rarity of such datasets, we proposed to improve training of the multi-label classifier via a multi-domain learning scheme that also incorporates domain-specific classifiers on auxiliary single-label datasets specific to either binary label. Specifically, we complement the training dataset of MRIs of the four cohorts (Control: 156, CI-only: 335, HIV-only: 37, HAND: 145) acquired by the Memory and Aging Center at the University of California - San Francisco with a CI-specific dataset only containing MRIs of HIV-negative subjects (Controls: 229, CI-only: 397) from the Alzheimer's Disease Neuroimaging Initiative and an HIV-specific dataset (Controls: 75, HIV-only: 75) provided by SRI International. Based on cross-validation on the UCSF dataset, the multi-domain and multi-label learning strategy leads to superior classification accuracy compared with one-domain or multi-class learning approaches, specifically for the undersampled HIV-only cohort. The 'prediction logits' of CI computed by the multi-label formulation also successfully stratify motor performance among the HIV-positive subjects (including HAND). Finally, brain patterns driving the subject-level predictions across all four cohorts characterize the independent and compounding effects of HIV and CI in the HAND cohort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.