Abstract

ABSTRACT Fluxes between fractured-karstified and detritic aquifers are commonly poorly understood in many environments. These two types of aquifers are in contact in the southeastern Pampean region in the Argentine Buenos Aires province, and the aim of this work is to analyze their relationship contributing to improve the hydrological model. A joint application of hydrochemical and multi-isotope (δ 2H, δ 18O, δ 13C-TDIC, δ 18O-TDIC, 87Sr/86Sr) tools was used. TDIC, δ 2H, δ 18O and δ 13C-TDIC allowed differentiating two main end members. Water in the Pampeano aquifer (PA) which is transferred from the fractured-karstic aquifer (F-KA) is characterised by high TDIC around 500–700 mg/L, isotopically depleted in 18O (about −5.5 ‰) and high δ 13C-TDIC (around −10.0 ‰). The other end member is direct recharge water infiltrated into the PA with TDIC ranging from 400 to 500 mg/L, slightly enriched in 18O (δ 18O = −4.8 ‰), and δ 13C-TDIC in the range of soil CO2 as a result of reactions with calcrete concretions (from −20.0 to −9.0 ‰). Dolomite dissolution is the main process controlling the chemistry of the low-mineralized (Mg–Ca-HCO3) waters, whereas high-mineralized (Na-HCO3) waters are strongly influenced by ion-exchange reactions with adsorbed Ca2+ and Mg2+ and by evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.