Abstract

BackgroundDengue is rapidly expanding mosquito-borne viral infection globally facing operational challenges due to insecticide resistance in dengue vectors. We have studied the susceptibility status of potential dengue vectors St. albopicta and St. aegypti to the commonly used insecticides.MethodsStegomyia larval bioassays were carried out to determine LC10, LC50 and LC99 values and resistance ratios (RR50 and RR99) for temephos. Adult susceptibility bioassay to 4% DDT, 0.05% deltamethrin, 5% malathion was assessed following standard procedure to determine the corrected mortality. Knock-down times (KDT50 and KDT99) were estimated and the knock-down resistance ratios (KRR50 and KRR99) were calculated.ResultsSt. albopicta wild population (WP) of Sotia was resistant to temephos as the LC99 value was 0.12 mg/l and found to be 2.3 fold high than the reference population (RP). St. aegypti WP of Borgong, Kusumtola and Serajuli displayed a RR99 of 2.5, 5.4 and 4.5 respectively suggesting high level of resistance to temephos. Results suggested that both St. albopicta and St. aegypti WP were fully resistant to DDT (mortality < 90%) in all the study locations. Both the species were completely susceptible to deltamethrin and malathion (corrected mortality > 98%), except for St. albopicta at Sotia which displayed low level of resistance to malathion (corrected mortality =95.4%). The estimated KDT values for both the species indicated high level of knock-down resistance to DDT and susceptibility to deltamethrin.ConclusionWP of both the dengue vectors showed varied response to temephos, while resistant to DDT and completely susceptible to deltamethrin. Both the species were susceptible to malathion at majority of the testing sites. Current results strongly advocate that DDT is no longer effective against dengue vectors, while thorough monitoring of malathion susceptibility in geographical area at dengue risk is inexorable to ascertain whether or not the resistance to malathion is focal. Information generated herein may be useful in better planning and implementing in dengue control strategy using insecticides.

Highlights

  • Dengue is rapidly expanding mosquito-borne viral infection globally facing operational challenges due to insecticide resistance in dengue vectors

  • St. albopicta and St. aegypti susceptibility to temephos Temephos susceptibility to St. albopicta was determined at Hawajan, Baghmari, Sotia and Kathulbari areas which suggested that all the populations were completely susceptible except in Sotia where the

  • The St. aegypti wild population (WP) collected in Rajgarh was found to have incipient resistance as the RR50 and RR99 values were 1.9 each

Read more

Summary

Introduction

Dengue is rapidly expanding mosquito-borne viral infection globally facing operational challenges due to insecticide resistance in dengue vectors. We have studied the susceptibility status of potential dengue vectors St. albopicta and St. aegypti to the commonly used insecticides. Dengue is the most important and rapidly expanding mosquito-borne viral infection, which is often inapparent but may develop into potentially lethal complications. The World Health Organisation (WHO) has estimated over 30-fold increase in global dengue incidences during the past 5 decades. The effort to restrain dengue transmission primarily focuses on the vector control using insecticides and reducing mosquito breeding sites. The control efforts targeting efficient vectors St. albopicta and St. aegypti have failed to curb the increasing incidence of dengue epidemics and its invasion into the new geographical areas [2,3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.