Abstract

This paper mainly studied the analytical solutions of three types of Van der Pol-Duffing equations. For a system with parametric excitation frequency, we knew that the ordinary homotopy analysis method would be unable to find the analytical solution. Thus, we primarily used the multi-frequency homotopy analysis method (MFHAM). First, the MFHAM was introduced, and the solution of the system was expressed by constructing auxiliary linear operators. Then, the method was applied to three specific systems. We compared the numerical solution obtained using the Runge–Kutta method with the analytical solution to verify the correctness of the latter. Periodic solutions, with and without time delay, were also compared under the same parameters. The results demonstrated that it was both effective and correct to use the MFHAM to find analytical solutions to Van der Pol-Duffing systems, which were classical systems. By comparison, the MFHAM proved to be effective for time delay systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.