Abstract

AbstractMultifrequency low temperature electron spin resonance (ESR) studies were carried out to atomically assess inherent point defects at the thermal ‘higher index' (211)Si/SiO2 interface. This reveals, as dominant imperfections, Pb‐type centers (generic entity Si3≡Si•, the dot representing an unpaired sp3‐like hybrid) occurring in densities of ∼1 × 1013 cm–2 for oxidation temperatures ∼400 °C. On the basis of the pertinent ESR characteristics, the inherent basic defect is typified as the Pb0(211) variant, resembling closely the Pb0 center in standard (100)Si/SiO2. At the higher index (211)Si/SiO2 interface, these defects predominantly pertain to defected Si atoms located at (111)‐face terraces. Combination of angular and frequency (ν) dependent studies show the Pb0(211) peak‐to‐peak line width ΔBpp to be composed of a residual width (ν→0) of 2.2 ± 0.1 G, to which dipolar broadening contributes an essential part, and a substantial inhomogeneous broadening component due to g distribution, predominantly in g⊥, induced by non‐uniform interface strain –also similar to the Pb0(100) properties. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.