Abstract

We present an effective multi-fidelity framework for shape optimization of super-cavitating hydrofoils using viscous solvers. We employ state-of-the-art machine learning tools such as multi-fidelity Gaussian process regression and Bayesian optimization to synthesize data obtained from multi-resolution simulations, and efficiently identify optimal configurations in the design space. We validate our simulation results against experimental data, and showcase the efficiency of the proposed work-flow in a realistic design problem involving the shape optimization of a three-dimensional super-cavitating hydrofoil parametrized by 17 design variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.