Abstract

The present paper deals with an efficient and accurate limiting strategy for the multi-dimensional hyperbolic conservation laws on unstructured grids. The multi-dimensional limiting process (MLP) which has been successfully proposed on structured grids is extended to unstructured grids. The basic idea of the proposed limiting strategy is to control the distribution of both cell-centered and cell-vertex physical properties to mimic multi-dimensional nature of flow physics, which can be formulated to satisfy so called the MLP condition. The MLP condition can guarantee high-order spatial accuracy and improved convergence without yielding spurious oscillations. Starting from the MUSCL-type reconstruction on unstructured grids followed by the efficient implementation of the MLP condition, MLP slope limiters on unstructured meshes are obtained. Thanks to its superior limiting strategy and maximum principle satisfying characteristics, the newly developed MLP on unstructured grids is quite effective in controlling numerical oscillations as well as accurate in capturing multi-dimensional flow features. Numerous test cases are presented to validate the basic features of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.