Abstract

A multi-channel parallel ultrasound detection system based on a photothermal tunable fiber optic sensor array is proposed. The resonant wavelength of the ultrasound sensor has a quadratic relationship with the power of a 980-nm heating laser. The maximum tuning range is larger than 15 nm. Through photothermal tuning, the inconsistent operating wavelengths of the Fabry-Perot (FP) sensor array can be solved, and then a multiplexing capacity of up to 53 can be theoretically realized, which could greatly reduce the time required for data acquisition. Then, a fixed wavelength laser with ultra-narrow linewidth is used to interrogate the sensor array. The interrogation system demonstrates a noise equivalent pressure (NEP) as low as 0.12 kPa, which is 5.5-times lower than the commercial hydrophone. Furthermore, a prototype of a four-channel ultrasound detection system is built to demonstrate the parallel detection capability. Compared with the independent detection, the SNR of parallel detection does not deteriorate, proving that the parallel detection system and the sensor array own very low cross talk characteristics. The parallel detection technique paves a way for real-time photoacoustic/ultrasound imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.