Abstract
At Plasma Liner Experiment, a set of 36 coaxial plasma guns are deployed quasi-uniformly over a 9 ft diameter spherical chamber and are used to form a high-Z spherically compressive plasma liner. Simulations indicate that for the concept to ultimately achieve optimal target density and temperature, a high degree of timing uniformity is required between all guns. To aid in quantifying and correcting gun-to-gun nonuniformities, a key diagnostic will consist of up to six fisheye-view CCD cameras positioned inside the main chamber such that each has all plasma guns within its view. The individual cameras can be triggered at different times to determine each plasma jet's muzzle velocity and structure for different operating conditions. This camera array is currently under development, and the implementation needs and challenges for this camera array are discussed here. Additionally, we detail the analysis methodology for determining jet-to-jet uniformity deviations and how we can correct them, thereby improving overall liner uniformity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.