Abstract

Inspection of surface and nanostructure imperfections play an important role in high-throughput manufacturing across various industries. This paper introduces a novel, parallelised version of the metrology and inspection technique: Coherent Fourier scatterometry (CFS). The proposed strategy employs parallelisation with multiple probes, facilitated by a diffraction grating generating multiple optical beams and detection using an array of split detectors. The article details the optical setup, design considerations, and presents results, including independent detection verification, calibration curves for different beams, and a data stitching process for composite scans. The study concludes with discussions on the system’s limitations and potential avenues for future development, emphasizing the significance of enhancing scanning speed for the widespread adoption of CFS as a commercial metrology tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.