Abstract
In this paper, a new multiband metamaterial absorber design is proposed and the numerical characterization is carried out. The design is composed of three layers with differently sized quadruplets in which the interaction among them causes the multiband absorption response in the infrared frequency regime. In order to characterize the absorber and explain the multiband topology, some parametric studies with respect to the dimensions of the structure are carried out and the contributions of the quadruplets to the absorption spectrum are analyzed. According to the results, it is found that the proposed metamaterial absorber has five bands in the infrared frequency regime with the absorption levels of: 98.90%, 99.39%, 86.46%, 92.80% and 97.96%. Moreover, the polarization dependency of the structure is examined and it is found that the design operates well as a perfect absorber with polarization independency in the studied frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.