Abstract

This article studies coordinated tracking of underactuated and uncertain autonomous surface vehicles (ASVs) via model-reference reinforcement learning control. It considered how model-reference control can be incorporated with reinforcement learning to address the challenges caused by model uncertainties and input underactuation, and how existing results may be employed to realize adaptive communication amongst ASVs. It is demonstrated that the proposed algorithm has a better performance over baseline control and effectively improves the training efficiency over reinforcement learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.