Abstract

Let $(R,\M)$ be a two-dimensional Muhly local domain, that is, a two-dimensional integrally closed Noetherian local domain with algebraically closed residue field and with the associated graded ring $\text{gr}_{\M}R$ an integrally closed domain. In this paper we show that a number of fundamental results of Zariski's theory of complete ideals in two-dimensional regular local rings are not necessarily valid in $R$. However, if the associated graded ring $\text{gr}_{\M}R$ satisfies an additional assumption as in work of Muhly and Sakuma, then we are able to show that ``any product of contracted ideals is contracted'' holds in $R$ if and only if $R$ has minimal multiplicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.