Abstract

Supramolecular organizations of achiral molecules are known to undergo spontaneous mirror symmetry breaking, materializing chiral macroscopic structures with enantiomeric excess. Using Mueller polarimetry, we show that the hierarchy at play in the self-assembly of an achiral amphiphilic cyanine molecule, C8O3, can be encoded in a hierarchical evolution of the states of polarization of a light beam interacting with the self-assembly. We propose a methodology to monitor the formation, growth and bundling of supramolecular assemblies in solution by tracing, at each stage of assembly, the circular and linear dichroisms together with degree of depolarization. This systematic polarization monitoring of the self-assembly allows us to investigate the various stages of the chiral nucleation process. In particular, we reveal that mirror symmetry breaking is driven, at the earliest stage of the self-assembly, by hydrophobic forces. Chiral excitons are then formed in tubular J-aggregates by a secondary nucleation, be...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.