Abstract
A major worldwide health problem, Helicobacter Pylori (H. pylori) infection is associated with a number of gastrointestinal disorders, such as gastric cancer and peptic ulcers. The shortcomings of traditional treatment plans often include adverse effects, low patient compliance, and the emergence of antibiotic resistance. Investigating different delivery methods is thus necessary to improve the effectiveness of treatment. Mucoadhesive microspheres show promise as a method for delivering anti H. pylori drugs in a targeted and sustained manner. With their ability to stick to the stomach mucosa, these microspheres increase the local concentration of the medication and guarantee a more thorough removal of the pathogen. The potential of Mucoadhesive microspheres in the management of H. pylori infection is examined in this review. We explore the properties and benefits of Mucoadhesive polymers, the production techniques for microspheres, and the variables affecting their functionality. To provide a thorough grasp of this delivery system, a variety of drug-loading strategies, release mechanisms, and in vitro and in vivo assessment methodologies are covered. The potential of Mucoadhesive microspheres to overcome the drawbacks of traditional therapy is shown by highlighting recent developments in their formulation and their therapeutic consequences. Mucoadhesive microspheres constitute an important advancement in the treatment of Helicobacter pylori because they guarantee a regulated release of antibiotics and improve medication absorption at the site of infection. In order to fully appreciate the advantages of this novel delivery method, further study is necessary. Future research paths and the difficulties in the clinical translation of this technology are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.