Abstract

BackgroundAlthough our microbial community and genomes (the human microbiome) outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with which to characterize the relationship of microbial community structure with their human hosts. A wide variety of taxa and metabolic pathways have been shown to be differentially distributed by virtue of race/ethnicity in the HMP. Given that mtDNA haplogroups are the maternally derived ancestral genomic markers and mitochondria’s role as the generator for cellular ATP, characterizing the relationship between human mtDNA genomic variants and microbiome profiles becomes of potential marked biologic and clinical interest.ResultsWe leveraged sequencing data from the HMP to investigate the association between microbiome community structures with its own host mtDNA variants. 15 haplogroups and 631 mtDNA nucleotide polymorphisms (mean sequencing depth of 280X on the mitochondria genome) from 89 individuals participating in the HMP were accurately identified. 16S rRNA (V3-V5 region) sequencing generated microbiome taxonomy profiles and whole genome shotgun sequencing generated metabolic profiles from various body sites were treated as traits to conduct association analysis between haplogroups and host clinical metadata through linear regression. The mtSNPs of individuals with European haplogroups were associated with microbiome profiles using PLINK quantitative trait associations with permutation and adjusted for multiple comparisons. We observe that among 139 stool and 59 vaginal posterior fornix samples, several haplogroups show significant association with specific microbiota (q-value < 0.05) as well as their aggregate community structure (Chi-square with Monte Carlo, p < 0.005), which confirmed and expanded previous research on the association of race and ethnicity with microbiome profile. Our results further indicate that mtDNA variations may render different microbiome profiles, possibly through an inflammatory response to different levels of reactive oxygen species activity.ConclusionsThese data provide initial evidence for the association between host ancestral genome with the structure of its microbiome.

Highlights

  • Our microbial community and genomes outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear

  • While the majority of the samples were targeted for 16S (V3-V5 region) profiling on 454 FLX Titanium platform [2,3], whole genome shotgun sequencing (WGS) data were generated for a subset of 681 samples

  • We utilized a robust cohort of samples from 89 individuals, which were sequenced at a single center and retained both 16S and WGS data

Read more

Summary

Introduction

Our microbial community and genomes (the human microbiome) outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with which to characterize the relationship of microbial community structure with their human hosts. No taxa were universally present among all body habitats and individuals, the carriage of metabolic pathways was surprisingly alike, with a greater degree of similarity observed among related race or ethnic groups [2,3]. These carriage patterns were functionally relevant, and genomic variation in microbial strains (gains, losses, and polymorphisms) underscored inter-individual variation in the microbiome. Taxonomic profiling associating both clades and metabolism with host covariates (namely age, gender, BMI, blood pressure, race and ethnicity, etc) demonstrated that most microbial variations are not well explained by examined clinical covariates other than race/ethnicity [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.