Abstract
Manganese-zinc (Mn-Zn) ferrites of the composition Mn0.5Zn0.5Fe2O4 are synthesized by solid-state reactions. Portions of the synthesized material are then ball milled for 1, 2, 4, 8, and 12 h. Their physical properties are subsequently analyzed by XRD, Mössbauer spectroscopy, and magnetization measurements. The XRD analysis reveals the cubic spinel structure for all milled samples. Upon ball milling, however, the crystalline size decreased while the microstrain increased significantly. Moreover, the magnetic order is enhanced by ball milling, as shown by the Mössbauer effect and magnetization measurements. The observed magnetic characteristics are consistent with ball milling changing the chemical order at the two sites of the spinel structure. The distribution of cations for the composition of these samples is suggested by considering the Fe3+ ions amounts that exist at the octahedral and tetrahedral sites. Interestingly, the milling process played a crucial role in enhancing the magnetization of these Mn-Zn ferrites. The remarkable magnetization of these Mn-Zn ferrites is useful for energy-related applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.